Математика

Пояснительная записка

Программа составлена на основании Примерной Программы общеобразовательных учреждений ( Москва, 2004г.) на основе регионального базисного  учебного плана

(2006г.)

В основе построения данного курса лежит идея гуманизации математического  образования, соответствующая современным представлениям о целях школьного образования и уделяющая особое внимание личности ученика, его интересам и способностям. В основе отбора методов и средств обучения лежит деятельностный подход.
Курс позволяет обеспечить требуемый уровень подготовки школьников, предусматриваемый государственным стандартом математического образования, а также позволяет осуществлять при этом такую их подготовку, которая является достаточной для углубленного изучения математики.
Цели обучения математике обусловлены общими целями образования, концепцией математического образования, статусом и ролью математики в науке, культуре и жизнедеятельности общества, ценностями математического образования, новыми образовательными идеями, среди которых важное место занимает развивающее обучение.
Основная цель обучения математике состоит в формировании всесторонне образованной и инициативной личности, владеющей системой математических знаний и умений, идейно-нравственных, культурных и этических принципов, норм поведения, которые складываются в ходе учебно-воспитательного процесса и готовят ученика к активной деятельности и непрерывному образованию в современном обществе.
Исходя из общих положений концепции математического образования, начальный курс математики призван решать следующие задачи:
– обеспечить прочное и сознательное овладение системой математических знаний и умений, необходимых для применения в практической деятельности, для изучения смежных дисциплин, для продолжения образования;
– обеспечить интеллектуальное развитие, сформировать качества мышления, характерные для математической деятельности и необходимые для полноценной жизни в обществе;

– сформировать умение учиться;
– сформировать представление об идеях и методах математики, о математике как форме описания и методе познания окружающего мира;
– сформировать представление о математике как части общечеловеческой культуры, понимание значимости математики для общественного прогресса;
– сформировать устойчивый интерес к математике;
– выявить и развить математические и творческие способности.
В курсе математики выделяется несколько содержательных линий.
1. Числа и операции над ними. Понятие натурального числа является одним из центральных понятий начального курса математики. Формирование этого понятия осуществляется практически в течение всех лет обучения. Раскрывается это понятие на конкретной основе в результате практического оперирования конечными предметными множествами; в процессе счета предметов, в процессе измерения величин. В результате раскрываются три подхода к построению математической модели понятия «число»: количественное число, порядковое число, число как мера величины.
В тесной связи с понятием числа формируется понятие о десятичной системе счисления. Раскрывается оно постепенно, в ходе изучения нумерации и арифметических операций над натуральными числами. При изучении нумерации деятельность учащихся направляется на осознание позиционного принципа десятичной системы счисления и на соотношение разрядных единиц.
Важное место в начальном курсе математики занимает понятие арифметической операции. Смысл каждой арифметической операции раскрывается на конкретной основе в процессе выполнения операций над группами предметов, вводится соответствующая символика и терминология. При изучении каждой операции рассматривается возможность ее обращения.
Важное значение при изучении операций над числами имеет усвоение табличных случаев сложения и умножения. Чтобы обеспечить прочное овладение ими, необходимо, во-первых, своевременно создать у детей установку на запоминание, во-вторых, практически на каждом уроке организовать работу тренировочного характера. Задания, предлагаемые детям, должны отличаться разнообразием и включать в работу всех детей класса. Необходимо использовать приемы, формы работы, способствующие поддержанию интереса детей, а также различные средства обратной связи.
В предлагаемом курсе изучаются некоторые основные законы математики и их практические приложения:
– коммутативный закон сложения и умножения;
– ассоциативный закон сложения и умножения;
– дистрибутивный закон умножения относительно сложения.
Все эти законы изучаются в связи с арифметическими операциями, рассматриваются на конкретном материале и направлены, главным образом, на формирование вычислительных навыков учащихся, на умение применять рациональные приемы вычислений.
Следует отметить, что наиболее важное значение в курсе математики начальных классов имеют не только сами законы, но и их практические приложения. Главное – научить детей применять эти законы при выполнении устных и письменных вычислений, в ходе решения задач, выполнении измерений. Для усвоения устных вычислительных приемов используются различные предметные и знаковые модели.
В соответствии с требованиями стандарта, при изучении математики в начальных классах у детей необходимо сформировать прочные осознанные вычислительные навыки, в некоторых случаях они должны быть доведены до автоматизма.
Значение вычислительных навыков состоит не только в том, что без них учащиеся не в состоянии овладеть содержанием всех последующих разделов школьного курса математики. Без них они не в состоянии овладеть содержанием и таких учебных дисциплин, как, например, физика и химия, в которых систематически используются различные вычисления.
Наряду с устными приемами вычислений в программе большое значение уделяется обучению детей письменным приемам вычислений. При ознакомлении с письменными приемами важное значение придается алгоритмизации.
В программу курса введены понятия «целое» и «часть». Учащиеся усваивают разбиение на части множеств и величин, взаимосвязь между целым и частью. Это позволяет им осознать взаимосвязь между операциями сложения и вычитания, между компонентами и результатом действия, что, в свою очередь, станет основой формирования вычислительных навыков, обучения решению текстовых задач и уравнений.
Современный уровень развития науки и техники требует включения в обучение школьников знакомство с моделями и основами моделирования, а также формирования у них навыков алгоритмического мышления. Без применения моделей и моделирования невозможно эффективное изучение исследуемых объектов в различных сферах человеческой деятельности, а правильное и четкое выполнение определенной последовательности действий требует от специалистов многих профессий владения навыками алгоритмического мышления. Разработка и использование станков-автоматов, компьютеров, экспертных систем, долгосрочных прогнозов – вот неполный перечень применения знаний основ моделирования и алгоритмизации. Поэтому формирование у младших школьников алгоритмического мышления, умений построения простейших алгоритмов и моделей – одна из важнейших задач современной общеобразовательной школы.
Обучение школьников умению «видеть» алгоритмы и осознавать алгоритмическую сущность тех действий, которые они выполняют, начинается с простейших алгоритмов, доступных и понятных им (алгоритмы пользования бытовыми приборами, приготовления различных блюд, переход улицы и т.п.). В начальном курсе математики алгоритмы представлены в виде правил, последовательности действий и т.п. Например, при изучении арифметических операций над многозначными числами учащиеся пользуются правилами сложения, умножения, вычитания и деления многозначных чисел, при изучении дробей – правилами сравнения дробей и т.д. Программа позволяет обеспечить на всех этапах обучения высокую алгоритмическую подготовку учащихся.
2. Величины и их измерение. Величина также является одним из основных понятий начального курса математики. В процессе изучения математики у детей необходимо сформировать представление о каждой из изучаемых величин (длина, масса, время, площадь, объем и др.) как о некотором свойстве предметов и явлений окружающей нас жизни, а также умение выполнять измерение величин.
Формирование представления о каждой из включенных в программу величин и способах ее измерения имеет свои особенности. Однако можно выделить общие положения, общие этапы, которые имеют место при изучении каждой из величин в начальных классах:
1) выясняются и уточняются представления детей о данной величине (жизненный опыт ребенка);
2) проводится сравнение однородных величин (визуально, с помощью ощущений, непосредственным сравнением с использованием различных условных мерок и без них);
3) проводится знакомство с единицей измерения данной величины и с измерительным прибором;
4) формируются измерительные умения и навыки;
5) выполняется сложение и вычитание значений однородных величин, выраженных в единицах одного наименования (в ходе решения задач);
6) проводится знакомство с новыми единицами измерения величины;
7) выполняется сложение и вычитание значений величины, выраженных в единицах двух наименований;

8) выполняется умножение и деление величины на отвлеченное число. При изучении величин имеются особенности и в организации деятельности учащихся.
Важное место занимают средства наглядности как демонстрационные, так и индивидуальные, сочетание различных форм обучения на уроке (коллективных, групповых и индивидуальных).
Немаловажное значение имеют удачно выбранные методы обучения, среди которых группа практических методов и практических работ занимает особое место. Широкие возможности создаются здесь и для использования проблемных ситуаций.
В ходе формирования у учащихся представления о величинах создаются возможности для пропедевтики понятия функциональной зависимости. Основной упор при формировании представления о функциональной зависимости делается на раскрытие закономерностей того, как изменение одной величины влияет на изменение другой, связанной с ней величины. Эта взаимосвязь может быть представлена в различных видах: рисунком, графиком, схемой, таблицей, диаграммой, формулой, правилом.
3. Текстовые задачи. В начальном курсе математики особое место отводится простым (опорным) задачам. Умение решать такие задачи – фундамент, на котором строится работа с более сложными задачами.
В ходе решения опорных задач учащиеся усваивают смысл арифметических действий, связь между компонентами и результатами действий, зависимость между величинами и другие вопросы.
Работа с текстовыми задачами является очень важным и вместе с тем весьма трудным для детей разделом математического образования. Процесс решения задачи является многоэтапным: он включает в себя перевод словесного текста на язык математики (построение математической модели), математическое решение, а затем анализ полученных результатов. Работе с текстовыми задачами следует уделить достаточно много времени, обращая внимание детей на поиск и сравнение различных способов решения задачи, построение математических моделей, грамотность изложения собственных рассуждений при решении задач.
Учащихся следует знакомить с различными методами решения текстовых задач: арифметическим, алгебраическим, геометрическим, логическим и практическим; с различными видами математических моделей, лежащих в основе каждого метода; а также с различными способами решения в рамках выбранного метода.
Решение текстовых задач дает богатый материал для развития и воспитания учащихся.
Краткие записи условий текстовых задач – примеры моделей, используемых в начальном курсе математики. Метод математического моделирования позволяет научить школьников: а) анализу (на этапе восприятия задачи и выбора пути реализации решения); б) установлению взаимосвязей между объектами задачи, построению наиболее целесообразной схемы решения; в) интерпретации полученного решения для исходной задачи; г) составлению задач по готовым моделям и др.
4. Элементы геометрии. Изучение геометрического материала служит двум основным целям: формированию у учащихся пространственных представлений и ознакомлению с геометрическими величинами (длиной, площадью, объемом).
Наряду с этим одной из важных целей работы с геометрическим материалом является использование его в качестве одного из средств наглядности при рассмотрении некоторых арифметических фактов. Кроме этого, предполагается установление связи между арифметикой и геометрией на начальном этапе обучения математике для расширения сферы применения приобретенных детьми арифметических знаний, умений и навыков.
Геометрический материал изучается в течение всех лет обучения в начальных классах, начиная с первых уроков.
В изучении геометрического материала просматриваются два направления:
1) формирование представлений о геометрических фигурах;
2) формирование некоторых практических умений, связанных с построением геометрических фигур и измерениями.
Геометрический материал распределен по годам обучения и по урокам так, что при изучении он включается отдельными частями, которые определены программой и соответствующим учебником.
Преимущественно уроки математики следует строить так, чтобы главную часть их составлял арифметический материал, а геометрический материал входил бы составной частью. Это создает большие возможности для осуществления связи геометрических и других знаний, а также позволяет вносить определенное разнообразие в учебную деятельность на уроках математики, что очень важно для детей этого возраста, а кроме того, содействует повышению эффективности обучения.
Программа предусматривает формирование у школьников представлений о различных геометрических фигурах и их свойствах: точке, линиях (кривой, прямой, ломаной), отрезке, многоугольниках различных видов и их элементах, окружности, круге и др.
Учитель должен стремиться к усвоению детьми названий изучаемых геометрических фигур и их основных свойств, а также сформировать умение выполнять их построение на клетчатой бумаге.
Отмечая особенности изучения геометрических фигур, следует обратить внимание на то обстоятельство, что свойства всех изучаемых фигур выявляются экспериментальным путем в ходе выполнения соответствующих упражнений.
Важную роль при этом играет выбор методов обучения. Значительное место при изучении геометрических фигур и их свойств должна занимать группа практических методов, и особенно практические работы.
Систематически должны проводиться такие виды работ, как изготовление геометрических фигур из бумаги, палочек, пластилина, их вырезание, моделирование и др. При этом важно учить детей различать существенные и несущественные признаки фигур. Большое внимание при этом следует уделить использованию приема сопоставления и противопоставления геометрических фигур.
Предложенные в учебнике упражнения, в ходе выполнения которых происходит формирование представлений о геометрических фигурах, можно охарактеризовать как задания:
• в которых геометрические фигуры используются как объекты для пересчитывания;
•на классификацию фигур;
• на выявление геометрической формы реальных объектов или их частей;
• на построение геометрических фигур;
• на разбиение фигуры на части и составление ее из других фигур;

• на формирование умения читать геометрические чертежи;
• вычислительного характера (сумма длин сторон многоугольника и др.)
Знакомству с геометрическими фигурами и их свойствами способствуют и простейшие задачи на построение. В ходе их выполнения необходимо учить детей пользоваться чертежными инструментами, формировать у них чертежные навыки. Здесь надо предъявлять к учащимся требования не меньшие, чем при формировании навыков письма и счета.
5. Элементы алгебры. В курсе математики для начальных классов формируются некоторые понятия, связанные с алгеброй. Это понятия выражения, равенства, неравенства (числового и буквенного уравнения) и формулы. Суть этих понятий раскрывается на конкретной основе, изучение их увязывается с изучением арифметического материала. У учащихся формируются умения правильно пользоваться математической терминологией и символикой.
6. Элементы стохастики. Наша жизнь состоит из явлений стохастического характера. Поэтому современному человеку необходимо иметь представление об основных методах анализа данных и вероятностных закономерностях, играющих важную роль в науке, технике и экономике. В этой связи элементы комбинаторики, теории вероятностей и математической статистики входят в школьный курс математики в виде одной из сквозных содержательно-методических линий, которая дает возможность накопить определенный запас представлений о статистическом характере окружающих явлений и об их свойствах.
В начальной школе стохастика представлена в виде элементов комбинаторики, теории графов, наглядной и описательной статистики, начальных понятий теории вероятностей. С их изучением тесно связано формирование у младших школьников отдельных комбинаторных способностей, вероятностных понятий («чаще», «реже», «невозможно», «возможно» и др.), начал статистической культуры.
Базу для решения вероятностных задач создают комбинаторные задачи. Использование комбинаторных задач позволяет расширить знания детей о задаче, познакомить их с новым способом решения задач; формирует умение принимать решения, оптимальные в данном случае; развивает элементы творческой деятельности.
Комбинаторные задачи, предлагаемые в начальных классах, как правило, носят практическую направленность и основаны на реальном сюжете. Это вызвано в первую очередь психологическими особенностями младших школьников, их слабыми способностями к абстрактному мышлению. В этой связи система упражнений строится таким образом, чтобы обеспечить постепенный переход от манипуляции с предметами к действиям в уме.
Такое содержание учебного материала способствует развитию внутрипредметных и межпредметных связей (в частности, математики и естествознания), позволяет осуществлять прикладную направленность курса, раскрывает роль современной математики в познании окружающей действительности, формирует мировоззрение. Человеку, не понявшему вероятностных идей в раннем детстве, в более позднем возрасте они даются нелегко, так как многое в теории вероятностей кажется противоречащим жизненному опыту, а с возрастом опыт набирается и приобретает статус безусловности. Поэтому очень важно формировать стохастическую культуру, развивать вероятностную интуицию и комбинаторные способности детей в раннем возрасте.
7. Нестандартные и занимательные задачи. В настоящее время одной из тенденций улучшения качества образования становится ориентация на развитие творческого потенциала личности ученика на всех этапах обучения в школе, на развитие его творческого мышления, на умение использовать эвристические методы в процессе открытия нового и поиска выхода из различных нестандартных ситуаций и положений.
Математика – это орудие для размышления, в ее арсенале имеется большое количество задач, которые на протяжении тысячелетий способствовали формированию мышления людей, умению решать нестандартные задачи, с честью выходить из затруднительных положений.
К тому же воспитание интереса младших школьников к математике, развитие их математических способностей невозможно без использования в учебном процессе задач на сообразительность, задач-шуток, математических фокусов, числовых головоломок, арифметических ребусов и лабиринтов, дидактических игр, стихов, задач-сказок, загадок и т.п.
Начиная с первого класса, при решении такого рода задач, как и других, предлагаемых в курсе математики, школьников необходимо учить применять теоретические сведения для обоснования рассуждений в ходе их решения; правильно проводить логические рассуждения; формулировать утверждение, обратное данному; проводить несложные классификации, приводить примеры и контрпримеры.
В основу построения программы положен принцип построения содержания предмета «по спирали». Многие математические понятия и методы не могут быть восприняты учащимися сразу. Необходим долгий и трудный путь к их осознанному пониманию. Процесс формирования математических понятий должен проходить в своем развитии не-сколько ступеней, стадий, уровней.
Сложность содержания материала, недостаточная подготовленность учащихся к его осмыслению приводят к необходимости растягивания процесса его изучения во времени и отказа от линейного пути его изучения.
Построение содержания предмета «по спирали» позволяет к концу обучения в школе постепенно перейти от наглядного к формально-логическому изложению, от наблюдений и экспериментов – к точным формулировкам и доказательствам.
Материал излагается так, что при дальнейшем изучении происходит, развитие имеющихся знаний учащегося, их перевод на более высокий уровень усвоения, но не происходит отрицания того, что учащийся знает.

Содержание учебного материала

 

1

Повторение

3 ч.

2.

Неравенства.

7 ч.

3.

Оценка результатов арифметических действий

8 ч.

4.

Деление на двузначное и трёхзначное число.

6 ч.

5.

Площадь фигуры

5 ч.

6.

Дроби

37 ч

7.

Координатный луч.

4 ч.

8.

Задачи на движение.

20 ч.

9.

Углы. построение. Измерение.

11 ч.

10.

Диаграммы.

6ч.

11.

Графики.

13 ч.

!2.

Повторение изученного.

16 ч.

 

Итого

136 ч

В том числе на проведение контрольных работ- 13 часов.

 

Требования к результатам обучения учащихся
к концу 4-го класса

1-й уровень (уровень стандарта)
Учащиеся должны знать:
– название и последовательность чисел в натуральном ряду в пределах 1 000 000 (с какого числа начинается этот ряд, как образуется каждое следующее число в этом ряду);
– как образуется каждая следующая счетная единица;
– названия и последовательность разрядов в записи числа;
– названия и последовательность первых трех классов;

сколько разрядов содержится в каждом классе;
– соотношение между разрядами;
– название, количество разрядов, содержащихся в каждом классе;
– сколько единиц каждого класса содержится в записи числа;
– иметь представление о позиционности десятичной системы счисления;
– единицы измерения величин (длина, масса, время, площадь), соотношения между ними;
– функциональную связь между величинами (цена, количество, стоимость; скорость, время, расстояние;
производительность труда, время работы, работа).

Учащиеся должны уметь:
– выполнять устные вычисления (в пределах 1 000 000) в случаях, сводимых к вычислениям в пределах 100, и письменные вычисления в остальных случаях, выполнять проверку правильности вычислений;
– выполнять умножение и деление с 1000;
– вычислять значения числовых выражений, содержащих 3–4 действия со скобками и без них;
решать простые и составные задачи, раскрывающие смысл арифметических действий, отношения между числами и зависимость между группами величин (цена, количество, стоимость; скорость, время, расстояние; производительность труда, время работы, работа);
– решать задачи, связанные с движением двух объектов: навстречу и в противоположных направлениях;

решать задачи в 2–3 действия на все арифметические действия арифметическим способом (с опорой на схемы, таблицы, краткие записи и другие модели);
– уметь прочитать записанное с помощью букв простейшее выражение (сумму, разность, произведение, частное), когда одна из компонент действия остается постоянной и когда обе компоненты являются переменными;
– уметь находить значения выражений с одной переменной при заданном значении переменных;

– решать уравнения вида a ± x = b; xa = b ; ax = b; a : x = b; x : a = b на основе связи компонент и действий сложения, вычитания, умножения, деления;
– уметь сравнивать выражения в одно действие, понимать и объяснять, как изменяется результат сложения, вычитания, умножения и деления в зависимости от изменения одной из компонент;
– вычислять объем параллелепипеда (куба);
– вычислять площадь и периметр фигур, составленных из прямоугольников;
– выделять из множества треугольников прямоугольный и тупоугольный, равнобедренный и равносторонний треугольник;
– строить окружность по заданному радиусу;
– выделять из множества геометрических фигур плоские и объемные фигуры;
распознавать геометрические фигуры: точка, линия (прямая, кривая), отрезок, луч, ломаная, многоугольник и его элементы (вершины, стороны, углы), в том числе треугольник, прямоугольник (квадрат), угол, круг, окружность (центр, радиус), параллелепипед (куб) и его элементы (вершины, ребра, грани), пирамиду, шар, конус, цилиндр;
– находить среднее арифметическое двух чисел.

2-й уровень (уровень программы)
Учащиеся должны знать:
– название и последовательность чисел в пределах 1 000 000 000.

Учащиеся должны иметь представления:
– о чтении, записи и сравнении чисел в пределах 1 000 000 000.

Учащиеся должны уметь:
– выполнять прикидку результатов арифметических действий;
– вычислять значение числовых выражений, содержащих до 6 действий (со скобками и без них), на основе знания правила о порядке выполнения действий и знания свойств арифметических действий;
– находить часть от числа, число по его части, узнавать, какую часть одно число составляет от другого;
иметь представление о решении «задач на части»;
– понимать и объяснять решение задач, связанных с движением двух объектов: вдогонку и с отставанием;
– читать и строить вспомогательные модели к составным задачам;
– распознавать плоские геометрические фигуры при изменении их положения на плоскости;
– распознавать объемные тела (параллелепипед (куб), пирамида, конус, цилиндр) при изменении их положения в пространстве;

– находить объем фигур, составленных из кубов и параллелепипедов;
– использовать заданные уравнения при решении текстовых задач;
– решать уравнения, в которых зависимость между компонентами и результатом действия необходимо применить несколько раз: а • х ± b = с; (х ± b) : с = d; a ± x ± b = с и др.;
– читать информацию, записанную с помощью круговых диаграмм;
– решать простейшие задачи на принцип Дирихле;
– находить вероятности простейших случайных событий;
– находить среднее арифметическое нескольких чисел.

Учебно- методическая литература

1. Л.Г. Петерсон. Математика. 4 класс.1,2,3,-М.:Ювента, 2008.

2. . Л.Г. Петерсон, Т.С. Горячева, Т.В. Зубавичине, А.А.Невретдинова. Самостоятельные и контрольные работы по математике для начальной школы. М.: Баласс, «Школа 2000…»

 

1.Математика. 4 класс. Поурочные планы по учебнику Л.Г. Петерсон (2 кн.), Волгоград, «Учитель»,2008.

2.О.В. Узорова, Е.А. Нефедова.3000 примеров по математике ( Сложение и вычитание в пределах 1000)

3. О.В. Узорова, Е.А. Нефедова.3000 примеров по математике Внетабличное умножение и деление)

4.Т.Л. Мешалкина, С.А. Гладкова. Тренажёр по математике. Подготовка к итоговой аттестации в начальной школе. М., Ювента, 2009.

5.Л.А. Иляшенко. Математика. Итоговая аттестация. Типовые тестовые задания за курс начальной школы.

 

Материально- техническое и информационно – техническое обеспечение

 

1.Образовательная коллекция. Нескучная математика с Мудрым Вороном. Учим дроби 5-7 классы.

2.Супердетки. Тренировка арифметических способностей

3.Анимированные модули по теме «Доли».

 

 

 

http://www.school.edu.ru

Российский общеобразовательный                     портал

где содержатся образовательные ресурсы для учеников, учителей, родителей, администраторов. Учебные, научно -популярные, познавательные и другие материалы по основным школьным дисциплинам. Вопросы здоровья и психологии школьников. Газета «Первое сентября» и приложения к ней

http://www.viki.rdf.ru

Детские  электронные книги и презентации

http://school-collection.edu.ru/

Единая коллекция цифровых образовательных ресурсов

http://www.solnet.ee

Портал для детей и взрослых. Можно найти материал по воспитанию, развитию и 

образованию детей, дидактический и                                                                 сценарный материал для учителя начальных

http://www.prazdnik.by

Портал для детей и взрослых. Можно найти сценарии к различным мероприятиям.

http://www.it-n.ru/

Сайт творческих учителей. Разные сообщества.

http://mail.redu.ru

Исследовательская работа школьников

http://festival.1september.ru

Фестиваль педагогических идей «Открытый урок»

http://kid. nashcat.ru

Все для детей. Детский портал, детские сайты.

http://edu.rin.ru

Сайт Наука и образование. В разделе «Школьное образование» очень много полезной информации для родителей первоклассника: обзор существующих программ, готовность к школе.

 

 

 

 

 

Hosted by uCoz